
UCRL-WEB-201482

I/O Guide for LC

I/O Guide for LC - 1

Table of Contents

Preface 3
Introduction 4
I/O Glossary 5
Hierarchical Data Format 7

HDF Features 7
HDF Availablity 8
HDF5 File Structure 9
HDF Operations 11

MPI-IO 14
MPI-IO Role 14
MPI-IO Data Access 15
MPI-IO Issues at LC 17

GPFS at LC 18
GPFS, NFS, DFS Compared 19
How GPFS Works 21
GPFS Usage Advice 25

GPFS Purge Policy 25
GPFS Usage Data 26

I/O Analysis of FLASH 27
Lustre Parallel File System 29

Lustre Goals and Roles 29
Lustre and GPFS Compared 30

Feature Comparison 30
Purge Comparison 31

Lustre LLNL Implementation 32
LLNL's Lustre Strategy 32
LLNL's Lustre Service 34

Lustre Operational Issues 35
Directory Names and Aliases 35
Lustre Purge Policy 36
MPI-IO Interaction with Lustre 37
Lustre Backup Policy 38
Lustre Striping 39
Lustre Groups 41

Disclaimer 42
Keyword Index 43
Alphabetical List of Keywords 45
Date and Revisions 46

I/O Guide for LC - 2

Preface

Scope: After an overview of I/O issues, this guide provides an alphabetical glossary of (just
those key) I/O terms needed to understand the later treatments of LC-related I/O tools
and techniques. One major section explains the features and local use of the
Hierarchical Data Format (HDF), designed to promote efficient large-scale I/O (HDF
use by the I/O-intensive FLASH hydrodynamics code is also analyzed, later). Portable,
parallel I/O with the MPI library is discussed as well, both in terms of general
data-access routines and local implementation constraints. Another section contrasts
the General Parallel File System (GPFS, which supports parallel I/O on LC IBM
clusters) with NFS and DFS, also in use on LC machines. And another explains how
GPFS handles parallel writes (to clarify potential performance bottlenecks and I/O
strategies). A separate discussion introduces the design features (such as data and
metadata separation), local implementation details (such as file system names and
sizes), and known pitfalls of Lustre, the open-source parallel file system that LC
deploys on its Linux/CHAOS clusters. A purge-policy comparison for GPFS and
Lustre is also included.

Availability: GPFS is an IBM product available at LC on IBM SP machines. Lustre is designed
for and available only on LC Linux/CHAOS clusters. The availablity of other I/O
features and software may vary (details and restrictions are in the text related to each
feature).

Consultant: For help contact the LC customer service and support hotline at 925-422-4531 (open
e-mail: lc-hotline@llnl.gov, secure e-mail: hotline@pop.llnl.gov).

Printing: The print file for this document can be found at:

 OCF: http://www.llnl.gov/LCdocs/ioguide/ioguide.pdf
 SCF: https://lc.llnl.gov/LCdocs/ioguide/ioguide_scf.pdf

I/O Guide for LC - 3

http://www.llnl.gov/LCdocs/ioguide/ioguide.pdf

Introduction
High-performance input and output (I/O), including parallel I/O, is crucial for the overall success of

large-scale computer simulations, such as the ASCI simulations on which LC's production computing
resources are focused. Planning for effective, scalable I/O by application codes is important because:

• Expensive computer time spent performing I/O is lost for the primary task of simulating physical
processes. For example, when wall-clock time for I/O grows beyond 25% of a code's total run time,
then I/O techniques are often causing serious overall performance problems.

• Simulation data, and the time and cycles spent creating them, are wasted if not well managed and
effectively saved for future reuse (such as visualization).

• Even with LC's large local disks and storage media, I/O can be a bottleneck in high-performance
computing unless applications use the most appropriate techniques for reading and writing their data.
The separation of compute nodes and I/O nodes can make this bottleneck worse.

LLNL's Scalable I/O Project has developed an "end-to-end model of the I/O stack" to make clear the
layers that data pass through from an application code to physical storage:

 |--------------------------------|
 | Application |
 |--------------------------------|
 | Data Models and Formats |
 |--------------------------------|
 | Hierarchical Data Format (HDF) |
 |--------------------------------|
 | MPI-IO |
 |--------------------------------|
 | GPFS Lustre HPSS |
 |--------------------------------|
 | Hardware |
 |--------------------------------|

This I/O Guide follows this same general path to introduce I/O terminology and to discuss LC-relevant
I/O techniques and resources (after an introductory glossary).

I/O Guide for LC - 4

I/O Glossary
This section provides an alphabetical set of brief explanations for the unusual technical terms that

appear througout this guide as I/O issues and features are discussed. The glossary here is intented to make
the text of this manual easier to use, not to offer a comprehensive I/O dictionary.

Disk striping distributes file data across multiple disks for speed and safety. The amount of
consecutive data stored on each disk is the "striping unit" or "strip width," which may
be the block size (as on IBM's GPFS (page 18)), or multiple blocks, or just a few
bits. "Declustering" is sometimes a synonym for disk striping.

F/b ratio measures the effectiveness of an I/O system. F is the rate of executing floating-point
operations and b is the rate of performing I/O (so F/b = 1 means one bit of I/O occurs
for every floating-point operation). While F/b = 1 is sometimes thought to be the ideal
for supercomputers, real-life F/b ratios are often closer to 100 for scientific
applications, and closer to 10 for I/O intensive applications.

GPFS is IBM's commercial General Parallel File System. This is the file system installed
for parallel I/O on LC's IBM/AIX massively parallel production computers (see the
separate section (page 18) below for local implementation details).

HDF is Hierarchical Data Format, a standard way to organize files internally and a
supporting I/O library. Both are designed to promote efficient large-scale I/O for
scientific applications (see the separate section (page 7) below for LC's local
implementation details).

Lustre is an open-source parallel file system from Cluster File Systems, Inc. This is the file
system installed for parallel I/O on LC's Linux/CHAOS massively parallel production
computers (see the separate section (page 29) below for LC's design constraints, a
feature comparison with GPFS, and local implementation details).

Parallel file system

is a file system specifically designed to allow
(a) simultaneous reads and writes to nonoverlapping regions of the same (logical)
file,
(b) simultaneous reads and writes of different files, and
(c) distribution (striping) of file data across several I/O nodes or disks (or both),
especially for large files. GPFS (page 18) is an example of a parallel file system in
use at LC; Lustre (page 29) is another example.

Parallel I/O subsystem

is a way to transfer data in parallel between compute nodes and dedicated I/O nodes
within the same massively parallel machine. The parallel I/O subsystem takes
advantage of the machine's high-speed internal switch to handle small requests
efficiently, yet it can scatter I/O operations among many nodes to efficiently distribute

I/O Guide for LC - 5

large files too. I/O occurs internally across the parallel I/O subsystem, then externally
across high-bandwidth channels to mass-storage servers.

RAID is a redundant array of inexpensive (or independent) disks. RAID technology provides
high reliability for stored data by striping the data across several disks in a way that
uses more disk space than without striping but maintains parity so that lost data can
be reconstructed even if one disk in the array fails. LC's globally mounted NFS disks
(such as for the global home directories) use RAID.

I/O Guide for LC - 6

Hierarchical Data Format

HDF Features
Hierarchical Data Format (HDF) is a (specification for a) file format and a supporting I/O library for

storing technical data. HDF is designed to promote efficient large-scale I/O for scientific applications
running in high-performance computing environments. Hierarchical Data Format 5 (called HDF5) replaces
an earlier, and incompatible, attempt to meet similar goals (called HDF4).

This table introduces key HDF5 features by comparing them with the corresponding aspects of HDF4:

 HDF5 HDF4 (replaced)

Developers: NCSA NCSA

Originated: 1998 1980s

Limits on
 stored objects: none 20,000
 file size: none 2 Gbyte

Data model: simple and some limits,
 comprehensive inconsistencies

Supports parallel I/O? yes no

Supports threaded
 applications? in theory no

I/O Guide for LC - 7

HDF Availablity
HDF5 is available for both AIX (IBM Unix) and LINUX operating systems, but some supported features

differ between them. This chart summarizes the most important differences:

 AIX (IBM) LINUX

Supports C? yes yes
 C parallel? yes yes (MPICH)
 F90? yes no
 F90 parallel? yes no
 C++? no yes

Tools available(*)? yes yes

Thread safe? no maybe

(*)To manipulate HDF files, such as H5DUMP.

Your program manipulates HDF5 files by using calls to the HDF5 I/O library. On LC production
machines this library resides in

 /usr/local/hdf5

and each library version has its own child directory. The C language (libhdf5.a) and Fortran
(libhdf5_fortran.a) alternatives for the latest version reside in directory hdf5-1.4.3 (down several levels),
for example, except on Linux machines, where the latest version is in hdf5-1.4.2 and there are no Fortran
files.

The HDF5 tools reside in a /bin directory several layers (depending on the host) below
/usr/local/hdf5-version on each LC production machine. See the "HDF Operations" section below (page
11) for details on using the HDF5 library and tools locally. See the "I/O Analysis of FLASH" section
below (page 27) for discussion of the benefits and pitfalls of trying to use HDF5 to support a hydrodynamics
code that performs extensive I/O.

I/O Guide for LC - 8

HDF5 File Structure
HDF5 files are binary containers for efficiently holding scientific data in an organized way, with explicit

supporting metadata to facilitate later reuse.

FEATURES.
HDF5 files consist of:

groups HDF5 groups behave like UNIX directories: they organize data hierarchically. Groups
can contain other, child groups or point to other groups. Every HDF5 group has three
attributes that overtly declare its:
NAME (one "root group" is always named "/").
PATHNAME (called its "OBJ-XID").
IMMEDIATE PARENT GROUP.

datasets HDF5 datasets within groups behave like UNIX files within directories, except that
they too have overt structures and supporting metadata. Every HDF5 dataset includes
these features:

dataspace is a way to overtly declare the number and range of the dimensions
needed for the subsequent scientific data.

datatype is a way to specify how to interpret the data, such as array,
compound, or atomic. "Atomic" HDF5 datasets can have their byte
order, size, and sign declared, along with any of these subtypes:
INTEGER
FLOAT
STRING
TIME
BITFIELD
OPAQUE
OBJECT REFERENCE
REGION REFERENCE
ENUM(ERATION)

data is the actual "lowest level" output from or input to your application
program (optionally empty).

XML ROLE.
Because HDF5 files are hierarchically organized and encoded with overt attributes, they can be represented
by and manipulated using XML (the ISO standard "eXtensible Markup Language"). NCSA, in collaboration
with LLNL, LANL, and SNL, has already developed and published an XML "document type definition"
(DTD, or element inventory) for HDF5, spelling out all the elements, attributes, and interrelationships
needed to adequately, accurately represent HDF5 files as "XML instances." For details see

http://hdf.ncsa.uiuc.edu/DTDs/HDF5-File.dtd

I/O Guide for LC - 9

http://hdf.ncsa.uiuc.edu/DTDs/HDF5-File.dtd

No mere intellectual exercise, this representation of HDF5 files in XML offers seven benefits to HDF5
users:

• Viewing.
You can use any web browser to inexpensively view (survey the contents of) the XML version of
an HDF5 file, either directly or when served from a site that generates HTML from XML on the fly.

• Cataloging.
You can use XML attributes to group or identify your datasets for faster, more reliable subsequent
searches or extraction by specified topic.

• Application Exchange.
Just as RTF facilitates the exchange of files among different word processors, so XML (as an
intermediate format) facilitates exchange of HDF5 files among application programs or HDF5 editors
that may be very different otherwise.

• Validation.
Standard XML parsers can validate the syntactic correctness of any HDF5 file in XML format (but
of course they cannot validate the data inside).

• Transformation.
Standard programming tools such as Javascript and XSL ("eXtensible Stylesheet Language") already
easily transform vaild XML into other formats or languages, and these now apply to HDF5 files as
well.

• Database Exchange.
XML facilitates insertion of HDF5 files into formal databases or other archival systems that recognize
XML input.

• Templates.
XML can create templates or skeleton files for reliably making new HDF5 files consistent with
previous ones, an aid in standardizing data handling among collaborators or different projects.

I/O Guide for LC - 10

HDF Operations
Your program manipulates HDF5 files by using calls to the HDF5 I/O library. On LC production

machines this library resides in

 /usr/local/hdf5

and each library version has its own child direcory. The C language (libhdf5.a) and Fortran
(libhdf5_fortran.a) alternatives for the latest version reside in directory hdf5-1.4.3 (down several levels),
for example, except on Linux machines, where the latest version is in hdf5-1.4.2 and there are no Fortran
files.

NCSA provides a fairly elaborate tutorial on HDF5 file operations (and hence on relevant library
components) online at

http://hdf.ncsa.uiuc.edu/HDF5/doc/Tutor/index.html

Among the most important operations on HDF5 files are these:

File Creation. The include file hdf5.h (for C) or the module HDF5 (for Fortran) contains definitions
and declarations that you must use in any program that invokes the HFD5 library. A
call to routine H5Fcreate (C) or h5fcreate.f (Fortran) creates a new HDF5 file, returns
its file identifier, and lets you specify its:
Filename
Access Mode (to control reads and writes)
Creation Property List (to control metadata; defaults available)
Access Property List (to control methods of performing I/O).

File Display. Once you have created, expanded, or altered an HDF5 file, you can display its contents
(groups, attributes, etc.) in human-readable form by invoking any of several software
tools provided by NCSA for this purpose. The HDF5 tools are:
h5debug
h5dump
h5gif
h5import
h5ls
h5repart
and they reside in a /bin directory several layers below /usr/local/hdf5/hdf5-version
on each LC production machine. (Unfortunately, the exact path varies considerably
in detail and length among LC's AIX, Compaq, and Linux platforms.) Each HDF5
tool, if run without options, displays several screens of text summarizing its usage
syntax and available options, then ends. One of the most helpful tools is H5DUMP,
which outputs an ACSI text display in Backaus-Naur Form by default or encoded in
XML if you reguest with its -x option. (See also the comments on using the IDL
library for HDF5 output, below.)

I/O Guide for LC - 11

http://hdf.ncsa.uiuc.edu/HDF5/doc/Tutor/index.html

Hyperslab Selection.

One way to read existing HDF5 files is by invoking H5Sselect_hyperslab (C) or
h5sselect_hyerslab.f (Fortran), which extracts a "hyperslab" from an HDF5 dataset.
A hyperslab can be
(a) a logically contiguous set of points, or
(b) a regular pattern of points or blocks even if noncontiguous.
Hyperslab selection from HDF5 datasets is so flexible that you can read from a dataset
with one size, shape, and datatype, and then write into a dataset with a different size,
shape, and datatype. For example, you can read blocks from a 2-D array of 32-bit
floats and then write that data into a contiguous sequence of 64-bit floats at a specified
offset in a 1-D array, as shown here:

---- ---- ---- --
| | | | | | \
| | | | | | |
| | | | | | |
---- ---- ---- |
 |-------------v
---- ---- ---- | v
| | | | | | | -------------------------
| | | | | | | | XXXXXXXXXXXXXXXXXXX |
| | | | | | / -------------------------
---- ---- ---- --

Parallel HDF5.

A parallel HDF5 API is supported on some but not all environments where the HDF5
library is available. For example, both AIX (IBM) and Linux support parallel C HDF5,
but parallel Fortran HDF5 is only available under AIX (see the "HDF5 Availability"
section above (page 8) for a summary chart). Parallel I/O on HDF5 files always
involves the MPI concept of a "communicator," a specified set of processes that pass
messages to each other. For parallel HDF5 I/O, each process in an MPI communicator
(a) invokes H5Pcreate (C) or h5pcreate.f (Fortran) to create an "access template" and
obtain a file's access property list, and
(b) invokes H5Pset_fapl_mpio (C) or h5pset_fapl_mpio.f (Fortran) to initiate parallel
I/O access.
With parallel HDF5 I/O,

• All parts of the file are accessible by all MPI processes.

• All objects in the file are accessible by all processes.

• Multiple processes can write to the same dataset (or, optionally, to individual
datasets).

The HDF5 tutorial referenced at the start of this section includes annotated
programming examples (in C and Fortran) of performing parallel I/O on HDF5 files.

I/O Guide for LC - 12

HDF5 Support in IDL.

On all production machines, including the Linux clusters, LC offers a licensed
commercial library and tools together called "Interactive Data Language" (IDL). IDL
is really a general data exploration and visualization language designed for writing
high-level data-analysis programs much more compactly than with C or Fortran. HDF
is not even mentioned in the index of the 210-page IDL "Getting Started" manual.
But HDF5 is indeed one of four "self-describing scientific data formats" that IDL
routines can read and query (but not write). IDL acknowledges the following
limitations when reading HDF5 files:
(1) No datatype conversion (until after the data is read).
(2) Only the topmost HDF5 error message is printed from the stack.
(3) No support for variable-length, reference, or opaque datatypes.
(4) No property-interface support.
(5) No writes.
On LC machines, the IDL library resides at

 /usr/global/tools/RSI/idl_5.5/lib

and the alphabetical descriptions of the 74 IDL HDF5 library routines appear in a
PDF manual at

 /usr/global/tools/RSI/idl_5.5/docs/HDF5.pdf

(See also the comments on using native HDF5 tools for output instead, in the "File
Display" paragraphs above.)

I/O Guide for LC - 13

MPI-IO

MPI-IO Role
A parallel I/O interface allows programs with many processes on many nodes to coordinate their I/O

read and write operations for greater efficiency. When the Message Passing Interface (MPI) Forum revised
and expanded the MPI standard in the mid 1990s, they added support for such parallel I/O. This portable,
parallel interface is called MPI-IO. Although not fully implemented by most vendors, LLNL was an early
supporter of MPI-IO.

Implementing successful parallel I/O, including MPI-IO, requires the underlying support of a parallel
file system (such as IBM's GPFS (page 18) or Linux-oriented Lustre (page 29)). This diagram shows why
a traditional file system causes expensive inefficiency when users attempt parallel I/O without proper
hardware support:

One inefficient approach concentrates all read and write requests at a single I/O node (a). Another allows
several nodes to read or write data (b), but only to separate (logically distinct) files that have to be somehow
merged later. A parallel file system (c) not only supports I/O from many nodes at the same time, but also
transfers the data to (different parts of) a single logical file, even if the file is "striped" across multiple
physical disks (for safety, convenience, or speed).

I/O Guide for LC - 14

MPI-IO Data Access
With MPI-IO, data moves between processes and files using a variety of specific read and write calls,

all variations on MPI_FILE_READ and MPI_FILE_WRITE. You select from these many routines to
address three independent aspects of parallel data access: positioning, synchronism, and coordination.

Positioning: MPI-IO data access routines provide three types of positioning (which you can mix
safely within the same program):

• Explicit Offsets.
Explicit offset routines perform data access at a file position that you give
explicitly as an argument (no file pointer used). All such routine names end in
_AT (such as MPI_FILE_WRITE_AT).

• Individual File Pointers.
Each I/O operation with a file pointer leaves the pointer pointing to the next
data item after the one last accessed by the operation (example:
MPI_FILE_WRITE unqualified).

• Shared File Pointers.
These behave much like individual file pointers (above), but each routine ends
in _SHARED (noncollective) or in _ORDERED (collective).

Synchronism: MPI-OI offers both blocking and nonblocking I/O routines.

• Blocking.
Blocking I/O calls will not return until their I/O request is completed. Blocking
is the default approach (e.g., with MPI_FILE_WRITE or
MPI_FILE_WRITE_AT); special routines request nonblocking I/O (next).

• Nonblocking.
Nonblocking I/O calls start an I/O operation but do not wait for it to complete.
This can allow data transfer simultaneous with computation if hardware permits.
To confirm that your data was actually read or written, however, you must use
a separate "request complete" call (such as MPI_WAIT). Nonblocking versions
of MPI routines all have names of the form MPI_FILE_Iaaa (where I is for
"immediate," such as MPI_FILE_IWRITE).

I/O Guide for LC - 15

Coordination: MPI data access routines may be noncollective or collective, a measure of their
dependence on other members of their process group.

• Noncollective.
Noncollective call completion depends only on the calling process itself. The
default MPI routines above (such as MPI_FILE_WRITE) perform noncollective
data access.

• Collective.
Completion of a collective call (made by all members of a process group) may
depend on the activity of every process making the call. But sometimes collective
calls perform better than noncollective ones because they can be automatically
optimized. Collective MPI routines end in _ALL (such as
MPI_FILE_WRITE_ALL) or in the pair _ALL_BEGIN/END (such as the
explicit-offset pair MPI_FILE_WRITE_AT_ALL_BEGIN and
MPI_FILE_WRITE_AT_ALL_END). The noncollective
MPI_FILE_aaa_SHARED pointer routines map to the collective routines called
MPI_FILE_aaa_ORDERED.

For more details on MPI-IO routines, on routine naming patterns for handling every combination of
positioning, synchronism, and coordination, and for a summary of MPI-IO data access conventions in
general, consult this specific part of the MPI Forum web site:

http://www.mpi-forum.org/docs/mpi-20-html/node186.htm

I/O Guide for LC - 16

http://www.mpi-forum.org/docs/mpi-20-html/node186.htm

MPI-IO Issues at LC
This section summarizes and compares MPI-IO issues, problems, and implementation constraints that

specifically affect local users of LC production machines.

NFS Incompatible with MPI-IO.
Successfully performing MPI-IO on NFS-mounted file systems requires that (a) NFS is at version 3, and
(b) each NFS shared directory is mounted with the "no attribute caching" (NOACC) option enabled.
However, all NFS-mounted file systems on LC production machines (such as /nfs/tmpn or the global home
directories) are installed with attribute caching enabled (so NOACC is disabled and does not appear in
their attribute list in /etc/fstab). This means that attempts to perform parallel MPI I/O to LC's NFS-mounted
disks will fail. (NFS normally caches modified file pages on each client node that performs a write, without
promptly updating the master copy on the file server. When multiple parallel clients write to the same file,
this shortcut means that NFS will probably not correctly update the master copy.) Furthermore, when a
globally mounted NFS file system (such as those supporting LC's common home directories) is flooded
with MPI I/O traffic, service slows, often dramatically, not only on the machine running the MPI code but
on all machines on which that file system is mounted. This is not a responsible use of shared computing
resources.

ROMIO Problems.
LC users of the vendor-independent MPICH libraries for MPI should note that the MPICH "ROMIO"
implementation of parallel I/O is not standard compliant in the way it manages file handles, which are used
for nonblocking I/O requests.

MP_SINGLE_THREAD Role.
On LC IBM machines, the environment variable MP_SINGLE_THREAD is an optimization flag. At LC,
it is NO by default, a setting that assumes multiple message-passing threads and can improve the performance
of the threaded MPI library. If this flag is set to YES, then your program cannot use MPI-IO.

Portability Issues.
Tests show that for some MPI-IO operations GPFS is much more efficient that Lustre, while for other
operations Lustre performs much better than does GPFS. See the "MPI-IO Interaction" (page 37) section
below for a discussion of the difficulties of predicting how MPI-IO operations tuned to one parallel file
system will behave when moved to a different parallel file system.

I/O Guide for LC - 17

GPFS at LC
A file system is the software (or sometimes, the software with the collection of data that it manages)

that allows you as a user to manipulate hierarchically organized, access-controlled files and directories
rather than just the countless raw blocks of data that comprise them (on disk). This section

• compares the LC-installed IBM General Parallel File System (GPFS), designed for large-scale parallel
I/O, with traditional file systems,

• explains just enough about how GPFS works to help you use it effectively, and

• offers basic usage advice for GPFS.

See the section above on MPI-IO (page 14) for a diagram that shows why some parallel file system
(such as IBM's GPFS) is necessary to support efficient parallel I/O from many processes running concurrently
on many separate compute nodes. See also the usage warnings and concerns above (page 17) about how
careless parallel I/O can not only hurt your code's performance but also undermine I/O service for many
users on many machines at once.

I/O Guide for LC - 18

GPFS, NFS, DFS Compared
The Network File System (NFS) and the Distributed File System (DFS) are commercial file-system

products designed to minimize file transfers by letting multiple computers all access a collection of files
as if it were local them. LC uses NFS extensively and DFS experimentally. But neither NFS nor DFS is
designed to

• let multiple (parallel) processes simultaneously read from or write to the same file from different
compute nodes,

• scale across many I/O servers to avoid I/O bandwidth bottlnecks, and

• transparently balence incoming I/O data across all disks in the file system with a built-in striping
algorithm (but RAID disks do provide behind-the-scenes striping at LC).

To support these special goals, LC has installed IBM's General Parallel File System (GPFS) on its AIX
IBM SP machines (but not on its Linux machines, even though GPFS is also available for Linux). The
parallel file system on LC Linux/CHAOS machines is Lustre, discussed in its own section (page 29) below.

This table summarizes the most interesting, user-relevant differences between the more familiar NFS
and DFS file systems on the one hand and the less familiar but more parallel-friendly GPFS on the other:

I/O Guide for LC - 19

GPFSDFSNFSFile-System Features
19981985Introduced:
IBMOpen Software

Foundation
SunOriginal vendor:

/p/gx1/dfs/proj/nfs/tmpnExample at LC:
Fast parallel I/O
for large files

Fine-grained
access control

Share files among
machines

Primary role:

YesNoNoEasy to scale?
Only IBM SP
"switch"

Any TCP/IP
network

Any TCP/IP
network

Network needed:

UNIX permission
bits (CHMOD)

Access control
lists (ACLs)

UNIX permission
bits (CHMOD)

Access control method:

512 Kbyte (White)256 byteBlock size:
256 KbyteDepends on RAIDDepends on RAIDStripe width:
26 Gbyte2 Gbyte2 Gbyte (longer

with v3)
Maximum file size:

File consistency:
Yes (see diagram)YesYes.....uses client buffering?
Yes (see diagram).....uses server buffering?
Yes (token passing)YesNo.....uses locking?
Byte rangeWhole file.....lock granularity?
Requesting compute
node

I/O server node.....lock managed by?

YesNoHome, No;
Tmp, Yes

Purged at LC?

NoYesYesSupports file quotas?

(See the glossary (page 5) above for definitions of the I/O terms in this table. See the next section (page
21) for an explanatory diagram showing how GPFS works.)

I/O Guide for LC - 20

How GPFS Works
This section explains in basic terms how the General Parallel File System (GPFS) works by tracing

the data flow when a typical application writes a file to GPFS. The goal is to reveal just enough of GPFS's
complex internal mechanisms to appreciate its strengths and weaknesses for I/O practice. The focus is on
GPFS users, not system designers.

See the next section (page 25) for usage advice based on the local GPFS machinery and GPFS
performance tests. See the general glossary (page 5) above for definitions of the I/O terms used in these
steps.

This diagram shows what happens on the compute node (where your application runs) and on the I/O
node (that services your write request) when you write to a GPFS file.

I/O Guide for LC - 21

 Compute Node I/O Node

| ------- ---------- |
| |mmfsd| |your app| | user space
| ------- --------v- |
| v 2 |
|------------------v----------|
| mmfsd **v********* |
| kernel ext. * * | kernel space
| * pagepool * |
| * * |
| *********v** | ----------------------------------
| v | | *************** |
| v | | * * |
| VSD client v 3 | | VSD server * buddybuffer * | 6
| v | | * ======v
| v | | ***^*********** | v

|-------------------------v---| |-----------------^--- | v
|| IP AIX Layer v || || IP AIX Layer ^ 5| ---------| v
|| v || || ^ | | || v
|| ************* v || || ***********^* | |Logical|| v
|| * * v || || * * | |vol mgr|| v
|| * recv pool * v || || * recv pool * | | || v
|| * * v || ^=========== * | ---------| v
|| ************* v || ^ || ************* | | v
|| v || ^ || | ---------| v
|| ***********v* || ^ || ************* | |Disk || v
|| * * || ^ || * * | |driver || v
|| * send pool * || ^ || * send pool * | ---------| v
|| * ======^ || * * | | v
|| ************* || 4 || ************* | ---------| v
|| ||Switch|| | | Disk ===v
|| || || | ---------|
|-----------------------------| |--------------------- |
------------------------------- ----------------------------------

Writing a File.
The major steps involved in writing a file are (data moves are numbered on the diagram):

1. Application begins the write.

Your application makes a write call with a pointer to a buffer in its space. The local
GPFS daemon (called mmfsd) checks to see if it has the right to modify the target
file. If so, it gets a lock to its requested byte range, not to a whole block or to the
whole file (this enables concurrent reads or writes elsewhere in the file by other
processes). If not, it finds out from the GPFS "token manager server" which other
compute nodes hold the lock and it negotiates directly with those nodes (for scalability)
to get its turn with the lock token.

2. First CPU copy occurs.

The mmfsd gets the file metadata that it will update as the file grows, gets some disk
space for the write, and gets some buffer space from the local GPFS pagepool (if none

I/O Guide for LC - 22

is available, the oldest used buffer is written to disk). Your data then moves from the
application's data buffer into the GPFS pagepool buffer. This ends your "application
I/O time," because now the application completes its write system call. Privately,
GPFS schedules a worker thread to continue the write if and when the pagepool block
is full, a technique called "write-behind caching."

3. Second CPU copy occurs.

The GPFS worker thread requests that the Virtual Shared Disk (VSD) client write the
data to disk in GPFS-blocksized chunks. This request passes to the IP layer, where
the write is broken up into 60-Kbyte IP message packets (called mbufs). Your data
then moves to the local switch communications send pool (spool) buffers, the second
time that the compute node CPU has copied it.

4. Your data moves across the switch.

The VSD client sends the IP packets with your data over IBM's high-speed interconnect
among all SP nodes (called the SP switch). The VSD server on the I/O node collects
the incoming packets in its receive pool (rpool) buffer.

5. Third CPU copy occurs.

Once the VSD server on the I/O node receives all the packets in your application's
request, it allocates a buddy buffer (or queues the data in the switch receive pool until
buffer space opens up). The buddy buffer reassembles the original chunk of data from
the packets, making the third CPU copy through which it has passed.

6. Your data moves to disk.

When the buddy buffer is allocated, the VSD server releases all mbufs in the receive
pool and calls the Logical Volume Manger to schedule a disk write through the device
driver. The disk driver performs the write, perhaps waiting just enough to combine
this data with other sequential writes to form an entire storage block (which on RAID
disks, such as at LC, will equal the size of the RAID stripe).

7. Server notifies the client.

The VSD server releases the no-longer-needed buddy buffer on the I/O node and
notifies the VSD client on the compute node that the write has safely completed.

8. Client completes the process.

The VSD client ends this multi-stage write process by making the previously
committed pagepool buffer available for the next application call.

I/O Guide for LC - 23

Reading a File.
GPFS disk reads follow the same pattern as writes, but with data flowing in the reverse direction. Also,
during reads GPFS tries to guess which data your application will request next and prefetch those blocks
to the pagepool (if the guess is right, the performance gain is substantial).

I/O Guide for LC - 24

GPFS Usage Advice

GPFS Purge Policy

Using GPFS (at LC) effectively and appropriately requires storing your files so that you avoid needlessly
clogging the file system, and especially so that you avoid losing valuable data to the GPFS file purge.

• Threshold:
LC purges GPFS when and only when usage exceeds 80%.
Purging of files continues (oldest files first) until the file system is no more than 70% full (see
schedule below).

• Scope:
All GPFS files at least 13 weeks old (= 3 months) are eligible to be purged if the purge threshold is
reached.
All GPFS files 100 Kbyte or less in size are exempt from the purge regardless of their age.

• Schedule:
If usage reaches the purge threshold during any month, then LC will start purging eligible GPFS
files on the third Tuesday of that month (and continue until usage sinks to 70%).
On the first Tuesday of every month, pre-purge logs are available for each user in a personal directory
called

 /p/gxx/purgelogs/username

(to help you anticipate which of your files are vulnerable for purge that month). Remember that every
listed vulnerable file may not actually be purged, because the purge works through the list oldest to
youngest only so far as needed to reduce usage to 70%.

See a later section for a chart (page 31) that compares the very different purge policies that apply to
GPFS (AIX) and Lustre (Linux) parallel file systems.

I/O Guide for LC - 25

GPFS Usage Data

If you make use of GPFS on LC's AIX machines (/p/gb1, etc.), you may need to coordinate your disk
space needs with other users on the same machine. Every LC AIX machine therefore offers a system file
called /usr/local/etc/pfs_status.machinename that reports for each available parallel file system its current
total size, space already used, percentage used, percentage of possible inodes (roughly, files) used, and an
ordered list of users and their current space usage (in both Tbytes and number of files).

I/O Guide for LC - 26

I/O Analysis of FLASH
What is FLASH?

FLASH is an adaptive-mesh parallel hydrodynamics code developed at the University of Chicago's Center
for Astrophysical Thermonuclear Flashes (flash.uchicago.edu (URL: http://flash.uchicago.edu)), a DOE
"ASCI Alliance" site. FLASH simulates astrophysical thermonuclear flashes (such as supernovae and x-ray
bursts) in two or three dimensions. Written in Fortran90, this code uses MPI for interprocess communication,
relies on HDF5 (page 7) for handling output data, and solves the compressible Euler equations on a
block-structured adaptive mesh.

Because I/O is important for overall FLASH performance, this is an excellent test case for I/O
optimization strategies (each FLASH run often generates 0.5 Tbyte of data, and I/O sometimes takes up
as much as half of the total FLASH run time on 1024 processors).

What is the FLASH I/O Benchmark?
The FLASH I/O benchmark tests FLASH's I/O performance independently of using the entire code. It sets
up the same data structures as FLASH, fills them with dummy data, and then performs I/O through the
HDF5 interface (or alternatives). The benchmark tests I/O performance on three kinds of files:

• Checkpoint Files--
used to restart after a failed run, these files store all variables, the tree structure, the current simulation
step, and the number of steps. Computational blocks account for more than 95% of the data written
during each checkpoint, and 24 separate I/O operations (one per variable) are needed to write all of
the computational blocks.

• Plot Files--
are used for visualization runs. Once again, a separate I/O operation per variable is involved, but not
all variables are stored and precision is reduced to 4-byte reals instead of 8-byte reals.

• Plot Files With Corners--
similar to plot files but with an extra step added to generate a 9-by-9-by-9 interpolated block instead
of the normal 8-by-8-by-8 block (to facilicate subsequent visualization).

FLASH performs I/O in this way to minimize the memory needed (a buffer to hold all of the variables for
one single write would be very large) and because later data analysis is greatly aided by storing each
variable separately.

Current I/O Issues.
Possible general I/O optimization strategies (most related to HDF use by FLASH) that are currently under
study at LLNL and other ASCI sites include:

• Storage Density--
To store each variable in a separate record, single variables are extracted from the array of blocks,
where the values are not contiguous in memory. FLASH extracts these values using the "hyperslab"
feature of the HDF5 library.

I/O Guide for LC - 27

http://flash.uchicago.edu

• Record Size--
The small records that FLASH writes at the beginning of its output may be as expensive as the large
chunk that it dumps at the end. Packing small records, either in the code itself or by instructing the
HDF5 library to buffer them before writing to disk, could significantly improve performance.

• Write Calls--
FLASH issues only a single call to H5Dwrite for each variable stored. But within the library, HDF
could make one compound MPI object to address the data or it could issue many separate write calls
itself. Setting the "data transfer property" to use collective I/O should force HDF to use the first
strategy instead of the second, perhaps making a significant difference in overall I/O performance.

• Two-Phase I/O--
Experiments on ASCI Red show a fivefold increase in I/O rate by using two-phase I/O: first, collect
output across processors into a buffer, then write a large contiguous chunk of memory to disk. This
requires careful interaction among FLASH, the HDF5 library, and the MPI_file_open command,
and the portability of that interaction remains to be tested on other machines (HDF5 features are
known to vary among platforms).

• Split I/O--
Normally the metadata for an XML-encoded HDF5 file resides in the same file as the data stored.
Splitting the metadata into a file separate from the FLASH data itself might improve I/O, especially
for situations (such as writing checkpoint files) where the likelihood of ever reading the file later is
small so reading inefficiencies can be ignored.

I/O Guide for LC - 28

Lustre Parallel File System

Lustre Goals and Roles
A parallel file system is part of any complete massively parallel computing environment (in fact, failure

to use an available parallel file system and instead running parallel I/O to a traditional global file system
such as /nfs/tmpn will degrade I/O performance for all users across all the machines that share that traditional
file system).

In general terms, such a parallel file system:

• mounts on every compute and login node across the cluster that it serves,

• stores very large files efficiently, such as application-code data sets or restart dumps of runs that
encounter trouble, and

• uses high-speed local communication paths to move data quickly to minimize I/O delays during code
execution.

At LC, a parallel file system tailored to LLNL's specific computational needs and resource design
policies must also:

• scale up to effectively serve clusters with over 1,000 nodes (and eventually those with over 10,000
nodes),

• rely on open source software (to maximize vendor flexibility and encourage collaboration with
university researchers worldwide), and

• be independent of any single brand of storage-device hardware. We want to be able to change hardware
vendors as new design features become available, and to make the most of our hardware funds.

LC's (collaborative) attempt to develop a practical parallel file system that meets these criteria is called
Lustre (for "Linux Cluster"). The prime contractor is Cluster File Systems, Inc., whose own technical
description of Lustre appears at its web site:

www.clusterfs.org

The other subsections of this section compare Lustre with GPFS (IBM's proprietary "general parallel
file system"), describe the unusual implementation features that Lustre includes (as installed for production
use on LC Linux machines), and explain how to cope with the currently known pitfalls or complexities
that Lustre presents to users. LC's point of contact for users needing technical advice about the local Lustre
file systems is Richard Hedges (hedges1@llnl.gov).

I/O Guide for LC - 29

http://www.clusterfs.org

Lustre and GPFS Compared

Feature Comparison

LLNL deploys both GPFS (page 18) and Lustre parallel file systems (to support AIX and Linux/CHAOS
compute clusters, respectively). Here is a feature-by-feature comparison of these two alternative solutions
to the parallel file-system problem.

GPFSLustreFile-System Features
19982003Introduced:
IBMCluster File

Systems Inc.
Vendor:

IBM onlyMany brandsHardware:
IBM proprietaryGNU public license, open

source
Software:

Storage Area Network
(SAN),
Network Shared Disk,
or combination

TCP/IP (Ethernet),
Quadrics Elan 3 or 4,
Infiniband

Switches allowed:

IBM proprietarySandia's Portals API
(open)

Networking protocol:

Token passingIntent based
(request + reason sent
together)

File locking:

Byte rangeByte rangeLock granularity:
Together, by the same
servers

Separated, by
different servers

Data/metadata operations:

(1) same disks attached to all
nodes,
(2) storage nodes manage
both data and metadata

(1) "object storage targets"
manage data moves to
actual disks,
(2) metadata servers
manage namespace

Scalability strategy:

512 kbyte (White)Block size:
YesYes

(but lacks ACLs)
POSIX compliant?

I/O Guide for LC - 30

Purge Comparison

File systems at or near their capacity often show degraded performance, higher I/O error rates, or
sometimes complete service failure. To make service more predictable and reliable, LC intentionally
destroys ("purges") files on at-risk file systems intended for temporary storage (especially the large
NFS-mounted termporary file systems and the GPFS and Lustre parallel file systems).

This chart summarizes and compares the current LC file-purge policies on those file systems where
LC regularly purges user files (without backup):

Lustre (Linux)GPFS (AIX)/nfs/tmp*Purge Policy
YesYesYesPurged?
NoNoNoBacked up?
As needed80%70%Usage threshold that

triggers a purge?
As needed70%50%Purged down to

what level?
Oldest files firstOldest files firstOldest files firstPurge order?

Eligible files:
Over 60 daysOver 13 weeks

= 91 days
Over 10 days(+)...Age (last accessed)?

Any sizeOver 100 kbyteAny size...Size?
Schedule:

As neededMonthly,
third Tuesday

Nightly (if
needed)

...Purge cycle?

NoYes, first Tuesday(#)No...Prepurge inventory?

(+)Over 5 days if usage reaches 90% since the previous day.
(#)Prepurge logs for each user are available at /p/gX1/purgelogs/username, where X is the relevant machine
abbreviation (e.g., gum1) and username is your login name. Each log lists your specific files that would
be purged unless you store and delete them beforehand.

I/O Guide for LC - 31

Lustre LLNL Implementation

LLNL's Lustre Strategy

DESIGN.
Two key design features distinguish Lustre's implementation from other parallel file systems:

• Division of Labor.
Lustre separates a file's metadata (its attributes and status information) from the file's data (its
"content" that a program wants to get or put). Each is handled by its own separate server(s) for
efficiency.

• Object Approach.
All actual file I/O is mediated by one or more "object storage targets" (OSTs), on which files seem
to reside but which really mask the character of the underlying physical storage devices (could be
multiple disks or other "file systems" of various sizes or brands). This approach promotes flexibility,
reliability, and scalability.

FRAMEWORK.
This diagram shows how the logical parts of Lustre fit together (from a user's viewpoint):

 |METADATA|
 | SERVER | ----
 | MDS | file attributes ---|D1|
 ---------- | ----
 | | ----
 | file content |--|D2|
 -------- | --------- | ----
 |CLIENT| | |OBJECT | -------- | ----
 ---------------------------------|STORAGE|----|DEVICE|----|D3|
 |TARGET | |DRIVER| ----
 inode switch | OST | -------- ...

 logical physical
 storage storage
 location locations

An "inode" is the standard UNIX data structure for a file (or directory or symbolic link to either one).
When your application "creates a file" (inode) on Lustre, the system's unusual design features come into
play, as described below.

METADATA SERVER.
A Lustre Metadata Server (MDS; there are usually several for speed and failover redundancy) manages
all "namespace operations" relevant to your file, such as assigning or updating references to the file's

• name,

• owner,

• permissions,

• access (conflict-control) locks, and
I/O Guide for LC - 32

• (apparent) location on an OST (or striped across several OSTs).

The MDS does not participate in data transfers between the program and storage devices, however (those
occur directly between the client node and the OSTs involved to save overhead). Nevertheless, LC Lustre
users often encounter slow metadata performance (such as slow response to LS when executed with options
like -l).

OBJECT STORAGE TARGET (OST).
Each Lustre OST is a server devoted to file I/O operations. It handles reads and writes of file data, but it
talks to the Metadata Server (MDS) only if namespace changes for the file are needed. OSTs can "fill up"
as if they were disks and can share files by striping (as if they were RAID disks). But files actually reside
on lower-level physical devices managed indirectly by device drivers. These underlying storage devices
are sometimes called "object-based disks" (OBDs) to emphasize how much their physical traits are hidden
from your application program: they can be generic or customized and branded, can include nondisk
storage, and can be upgraded to newer technology "below" an OST without disturbing that OST's consistent,
reliable service to your program I/O requests. At LLNL, some OSTs come not from Cluster File Systems
but from Blue Arc, an alternative brand. OSTs provide not only storage "abstraction," but also modular
expandability: more OSTs can be easily added to an existing Lustre file system to expand the pool of
logical locations for incoming files.

One drawback of allowing different brands and kinds of physical storage device to hide below the OST
level is that your application program writing to Lustre may receive different exit or return codes at different
times. Users often interpret these return-code differences as file system errors, when they usually just
reflect subtle between-brand differences allowed within the POSIX specification. If you use Lustre
extensively, change your application to overtly check I/O return codes so that you can appropriately ignore
unimportant differences yet still detect file-corrupting genuine I/O errors.

NETWORK INDEPENDENCE.
At LLNL, Lustre uses either the Quadrics Elan or the InfiniBand network switch (depending on the Linux
cluster where it is installed). Network independence is another Lustre design strength, faciliated by its use
of the "Portals protocol stack," an abstract approach to networking originally developed at Sandia National
Laboratory (but now available as open-source software).

SYSTEM ADMINISTRATION.
Lustre streamlines its own system administration by again relying on or coordinating with open standards,
including these:

• "eXtensible Markup Language" (XML) to encode its configuration files in plain text.

• Light-Weight Directory Assistance Protocol (LDAP) to promote redundancy and easy recovery from
infrastructure failures.

• Simple Network Management Protocol (SNMP).

I/O Guide for LC - 33

LLNL's Lustre Service

For each Linux/CHAOS production cluster at LC that currently has Lustre service, the comparison
chart below shows:

• the name(s) of the public parallel file system(s) by which computer users access Lustre disk space
on that cluster,

• the current total size of each parallel file system,

• the number of "object-storage server" (OSS) nodes or gateway nodes that enable Lustre service on
that cluster, and

• the underlying, often shared but hidden, "storage cluster" that contains the physical storage devices
offered to users as a public Lustre parallel file system.

The covertly shared but hidden underlying "storage clusters" mentioned in the last item above provide
a basis for mounting Lustre file systems across production Linux clusters in the future. LC is experimenting
with just such across-machine Lustre service. Gradual technical changes during the spring of 2006 should
lead to public tests of shared (cross-mounted) parallel file systems in mid year.

Current Lustre File Systems at LC.

Underlying
Storage
Cluster

Access
Nodes

Total
Capacity

Parallel
File System
Name(s)

Cluster
Name

IGS
(192 OSS)

32 gateway85 Tbyte
87 Tbyte

gm1
gm2

MCR

IGS32 gateway68 Tbyte
7.9 Tbyte

ga1
ga2

ALC

IGS4 gatewayshares
with MCR

shares
with MCR

Sphere(viz)

TLC
(64 OSS)

16 gateway174 Tbytegt1THUNDER

(self)32 OSS50 Tbyte
87 Tbyte

gl1
gl2

LILAC

BLC
(224 OSS)

1024 direct
connections

403 Tbyte
403 Tbyte

gb1
gb2

BG/L

BLC256 direct
connections

shares
with BG/L

shares
with BG/L

Gauss(viz)

I/O Guide for LC - 34

Lustre Operational Issues
This section briefly describes known Lustre usage (operational) issues or pitfalls, and it suggest ways

to cope with each one.

Directory Names and Aliases

NAMES.
On each LC Linux/CHAOS cluster, each Lustre parallel file system is mounted locally (like /usr/tmp)
rather than globally (like your common home directory). It can be seen by every node in the cluster, but
only by applications running on the specific cluster (such as MCR) where it resides. Each separate Lustre
file system has standard directory names of the form

 /p/gX1/username
 [example: /p/gm1/smith]

where

/p indicates that this is a parallel file system (allows many nodes to interact appropriately
with a file at the same time),

/g indicates that all nodes on this cluster but only those can access this directory,

X is a lowercase one- or two-letter abbreviation for the single cluster that this file system
serves (e.g., m for MCR, a for ALC), and

username is your login name on the relevant cluster.

This Lustre naming scheme is the same as that used for GPFS directories that serve the IBM/AIX clusters
at LC.

ALIASES.
One obvious drawback with machine-specific directory names such as /p/gm1/smith is that using them in
job-control scripts will prevent moving those scripts to other Linux clusters without renaming all of the
parallel directories mentioned. To circumvent this problem, LC automatically provides for each parallel
directory a symbolic link (an alias) of the form

 /p/glocal1/username

You can use this name in a portable script because files created in directory /p/glocal1/abc will (also)
appear in the corresponding local /p/gX1/abc directory on each cluster X where the script runs.

I/O Guide for LC - 35

Lustre Purge Policy

Using Lustre (at LC) effectively and appropriately requires storing (archivally) your files so that you
avoid needlessly clogging the parallel file system, and especially so that you avoid losing valuable data in
case of a Lustre file purge. Once files are purged from Lustre they cannot be recovered, so use archival
storage (see EZSTORAGE (URL: http://www.llnl.gov/LCdocs/ezstorage)) to protect your important
content.

Starting in August, 2006, LC uses the policy below to purge all Lustre (Linux) parallel file systems
(open and secure):

• Threshold:
LC purges Lustre file systems on an on-going, as-needed basis, without promising that any specific
usage level must be reached first to trigger a purge (this is different from both the GPFS and /tmp
purges, which involve a prespecified usage threshold).

• Scope:
All Lustre files not accessed for at least 60 days eligible to be purged at any time regardless of size
(for GPFS the time scope is 90 days).

• Schedule:
LC purges Lustre as soon as needed to maintain efficiency, not on a monthly or other periodic
schedule (GPFS purges occur only on the third Tuesday of each month).

See an earlier section for a chart (page 31) that compares the very different purge policies that apply
to GPFS (AIX) and to the Lustre (Linux) parallel file systems.

I/O Guide for LC - 36

http://www.llnl.gov/LCdocs/ezstorage

MPI-IO Interaction with Lustre

Each implementation of MPI-IO (parallel I/O using the message passing interface library) depends for
success, and certainly for whatever scalability it offers, on the underlying parallel file system that performs
its requested I/O operations. On AIX systems, MPI-IO is strongly affected by IBM's GPFS support, and
likewise on LC's Linux/CHAOS clusters, where Lustre supports MPI-IO requests. (WARNING: attempting
MPI-IO to a standard shared file system such as /nfs/tmpn, or worse, to your common home directory, will
severely degrade I/O performance for all users of that file system across all machines where it is mounted.)

MPI-IO efficiency varies greatly depending on its underlying parallel file system for three reasons:

• File-system software ("middleware") often reorganizes (to suit itself) how programmatic I/O operations
appear to the actual hardware that services them. For example, multiple small noncontiguous file
requests may coalese into one large(r) I/O step to reduce network traffic.

• File-locking is crucial for reliable simultaneous reads from or writes to (different parts of) one file,
yet locking availability and grain size vary from one parallel file system to another.

• Management operations (open, close, resize) depend on each file system's API for their implementation
(and hence for their efficiency) details.

The features of a parallel file system most likely to influence how well MPI-IO works and how easily
it scales up as the number of nodes grows large include:

• Just how the file system supports noncontiguous I/O to distributed files.

• The system's "consistency semantics," that is, just when data and metadata are locally cached and
when changes quickly propagate to all clients (after you write to a file, for example).

• Whether (and how) client-independent (across-node) "handles" (references to files) are available.

Some MPI-relevant features are advertised by parallel file-system vendors, while others are hidden or
even proprietary. So as a user, you should expect significant and sometimes inexplicable differences in
MPI-IO performance as you move your applications from one parallel file system to another (even within
the LC computing environment). Sometimes simple changes from one login node to another cause major
differences in resource contention and hence in file-transfer rates. See also the "Lustre Striping" subsection
(page 39) below.

For example, in April 2004, a team at Argonne National Laboratory compared (URL:
http://www-unix.mcs.anl.gov/~thakur/papers/scalable-mpi-io.pdf) several (ROMIO MPICH2) MPI-IO
operations across six different parallel file systems, including two in use at LLNL (Lustre on ALC, and
GPFS on IBM clusters). They found that the average time per file create (MPI_File_open) using 128 clients
was one third less on Lustre than on GPFS (although both systems took much longer than some other
competitors). But the average time to resize a file (MPI_File_set_size) using 128 clients was six times
greater on Lustre that on GPFS. Unknown internal mechanisms apparently account for these divergent
scalability results. Caution and careful testing are therefore vital to manage such MPI-IO surprises.

I/O Guide for LC - 37

http://www-unix.mcs.anl.gov/~thakur/papers/scalable-mpi-io.pdf

Lustre Backup Policy

Because of the volume of material involved and the computationally high overhead for parallel file
operations, LC does not backup its Lustre file systems. Should power failures or other unscheduled hardware
problems occur, all of your data residing on any Lustre file system could be lost with no possiblity for
recovery. Also, LC currently does not provide redundant (failover) "object storage servers" (OSSs). So
each OSS failure makes some data unavailable until hardware is repaired or replaced.

Hence, you should thoughtfully move or copy important Lustre files to duplicate (and safer) locations
yourself. Moving large numbers of small files can be tedious, error-prone, and very network congestive,
however. LC provides a special software tool, called HTAR, specifically designed to efficiently transfer
very large file sets either directly to archival storage or (if you request) to another file system on another
LC machine. Using HTAR to self-backup your Lustre files thus benefits you as well as other users (who
avoid the congestion you could cause by using slower manual transfers).

HTAR resembles traditional TAR in many ways (but not in requiring duplicate local disk space to
create its target archive file, a great benefit). To take full advantage of HTAR's efficient backup potential,
consult the feature explanations and examples in the HTAR Reference Manual (URL:
http://www.llnl.gov/LCdocs/htar).

I/O Guide for LC - 38

http://www.llnl.gov/LCdocs/htar

Lustre Striping

DEFINITIONS.
Like many high-performance storage systems, Lustre uses disk striping to improve I/O speed: the system
automatically divides the data to be stored into "stripes" and spreads those stripes across (some) available
storage locations so that they can be processed in parallel. Since Lustre places files on logical "object
storage targets" (OSTs), which manage the physical disk interactions hidden from the user, user data is
striped across multiple OSTs to improve performance and to better balance the storage load.

Lustre is fairly fault tolerant (compared to GPFS and NFS), and it continues to operate even if one (or
more) specific OST goes offline. Striping data widely across OSTs works against this reliability, of course.
If any portion of your data resides on an OST that is down, then attempted access of that file returns an
I/O error until the faulty OST returns to service. So it may be important to know which OSTs a particular
file is spread across, or even to influence that spread. Two tools (see below) address this need on LC
machines served by Lustre.

DEFAULTS.
Stripe width is the number of devices (or, in the case of Lustre, the number of OSTs) across which a file
is divided. LC assigns different default stripe widths to Lustre on different computers to take advantage
of different storage resources as well as differences among each machine's "object storage servers" (OSSs,
the Linux nodes that communicate with OSTs). BlueGene/L, for example, runs two OST processes on
each OSS node. The current default Lustre stripe widths include:

 BlueGene/L 1
 ALC, MCR 2
 Thunder 4

TOOLS.
To discover the distribution of file segments across Lustre OSTs, use LFIND. If you type

lfind filename

where filename resides on any Lustre /p/gXn file system, then LFIND returns a list of locally available
OSTs (one per line, in order by their index numbers 0, 1, 2...n), the status of each OST (active/inactive),
and then the list of specific OSTs on which the segments of filename currently reside (again, ordered by
their index numbers). The first list may be long (for example, 64 OSTs support /p/gm2 on MCR).

To change the default Lustre striping characteristics for a new (empty, not yet written) file fname or
for a directory dname (so that new files written to it inherit those characteristics), use LSTRIPE. On a
Lustre-served machine, type

lstripe fname|dname stripesize stripestart stripewidth

where

stripesize specifies the number of bytes in each stripe (must be a multiple of 64 1-kbyte blocks
or 65536 kbyte).

I/O Guide for LC - 39

stripestart specifies the index number of the OST for the first stripe (randomly distributed for
load balancing by default).

stripewidth specifies the number of OSTs over which to spread the stripes (default varies by
machine, -1 specifies all OSTs).

(LSTRIPE creates fname when it runs; you must create dname with MKDIR.) Before using LSTRIPE
consider the strategy issues below, because inappropriate choices here can cost you dearly in parallel I/O
performance.

STRATEGY.
(1) Creating a very large file (for example, a large TAR bundle of already large files) on a small number
of OSTs will result in very suboptimal performance. Striping over more OSTs will use a larger fraction of
the available storage devices (or simply avoid TARing files that are already quite large).
(2) If your application program writes one file per process, then letting Lustre place these small separate
files on different OSTs "round robin" (the default) will beneficially balance the load on the underlying
storage devices. Striping over many (or all) OSTs here degrades performance.
(3) If your application program instead has all of its parallel processes write to different parts of a single
shared file then you will probably need to help Lusrte widely distribute this load. In this case, striping the
big shared file over many (or all) OSTs is probably very desirable.

I/O Guide for LC - 40

Lustre Groups

PROBLEM.
Support for group access to Lustre files is sometimes faulty of absent for groups other than your primary
group. You can always share Lustre files with others in your primary group. But Lustre may not give you
access to files assigned to other groups to which you belong, files that you could routinely share on other
file systems.

INTERACTIVE SOLUTION.
You can (temporarily) change your primary group to one of your secondary groups, to enable more flexible
access to Lustre files, by running

newgrp group2

where group2 is any one of your nonprimary group names. This spawns a new shell, in which you have a
different "real and effective" group ID. Remember, however, that all variables that you have not explicitly
EXPORTed to this new shell will revert to null or to their default values. Typing NEWGRP with no
argument restores your primary group to its original value (as specified in your password-file entry).

BATCH SOLUTION.
To adapt this same strategy for use in a batch script, insert the line

 newgrp group2 << EOFMARK

as the first executable line in your script (immediately after your #PSUB directives and any introductory
comments). Then insert the line

 EOFMARK

as the very last line of your batch script.

I/O Guide for LC - 41

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their

employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or

represents that its use would not infringe privately owned rights. Reference herein to any specific commercial
products, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States Government or the
University of California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government thereof, and shall not be used for advertising or product

endorsement purposes.
(C) Copyright 2006 The Regents of the University of California. All rights reserved.

I/O Guide for LC - 42

Keyword Index
To see an alphabetical list of keywords for this document, consult the next section (page 45).

Keyword Description
------- -----------
entire This entire document.
title The name of this document.
scope Topics covered in this document.
availability Where these programs run.
who Who to contact for assistance.

introduction Role and goals of this document.

glossary Basic I/O terms and distinctions.

hdf Hierarchical Data Format for I/O.
hdf-features HDF5, HDF4 features compared.
hdf-availability HDF under AIX and Linux at LC.
hdf-file-structure HDF5 file organization, XML model.
hdf-operations How to manipulate HDF files.

mpi-io Portable parallel I/O library.
mpi-io-role Parallel I/O interface in MPI-2.
mpi-io-data-access Positioning, synchronism, coordination.
mpi-io-issues MPI-IO local problems, features, tips.

gpfs General Parallel File System (IBM)
gpfs-compared GPFS, DFS, NFS compared.
gpfs-steps How GPFS works.
gpfs-advice GPFS usage advice and purge policy.

gpfs-purge LC purge policy for GPFS.
gpfs-usage Usage data reports for GPFS.

flash I/O analysis of FLASH code.

lustre Lustre parallel file system (Linux).
lustre-goals Role of Lustre, design goals.
lustre-compared Lustre compared with GPFS.

feature-comparison Lustre and GPFS features compared.
purge-comparison Lustre and GPFS purges compared.

lustre-design How Lustre is implemented at LC.
lustre-strategy Components and roles for LLNL Lustre.
lustre-service Current Lustre file systems at LC.

lustre-advice Lustre usage advice, pitfalls.
lustre-directory-names Names, aliases for Lustre directories.
lustre-purge LC purge policy for Lustre.
lustre-mpi-io How MPI-IO interacts with Lustre.
lustre-backup Do your own backup with HTAR.
lustre-striping Striping defaults, tools, strategy.
lustre-groups Lustre grouo-support problems.

I/O Guide for LC - 43

index The structural index of keywords.
a The alphabetical index of keywords.
date The latest changes to this document.
revisions The complete revision history.

I/O Guide for LC - 44

Alphabetical List of Keywords

Keyword Description
------- -----------

a The alphabetical index of keywords.
availability Where these programs run.
date The latest changes to this document.
entire This entire document.
flash I/O analysis of FLASH code.
feature-comparison Lustre and GPFS features compared.
glossary Basic I/O terms and distinctions.
gpfs General Parallel File System (IBM)
gpfs-advice GPFS usage advice and purge policy.
gpfs-compared GPFS, DFS, NFS compared.
gpfs-purge LC purge policy for GPFS.
gpfs-steps How GPFS works.
gpfs-usage Usage data reports for GPFS.
hdf Hierarchical Data Format for I/O.
hdf-availability HDF under AIX and Linux at LC.
hdf-features HDF5, HDF4 features compared.
hdf-file-structure HDF5 file organization, XML model.
hdf-operations How to manipulate HDF files.
index The structural index of keywords.
introduction Role and goals of this document.
lustre Lustre parallel file system (Linux).
lustre-advice Lustre usage advice, pitfalls.
lustre-backup Do your own backup with HTAR.
lustre-compared Lustre compared with GPFS.
lustre-design How Lustre is implemented at LC.
lustre-directory-names Names, aliases for Lustre directories.
lustre-goals Role of Lustre, design goals.
lustre-groups Lustre grouo-support problems.
lustre-mpi-io How MPI-IO interacts with Lustre.
lustre-purge LC purge policy for Lustre.
lustre-service Current Lustre file systems at LC.
lustre-strategy Components and roles for LLNL Lustre.
lustre-striping Striping defaults, tools, strategy.
mpi-io Portable parallel I/O library.
mpi-io-data-access Positioning, synchronism, coordination.
mpi-io-issues MPI-IO local problems, features, tips.
mpi-io-role Parallel I/O interface in MPI-2.
purge-comparison Lustre and GPFS purges compared.
revisions The complete revision history.
scope Topics covered in this document.
title The name of this document.
who Who to contact for assistance.

I/O Guide for LC - 45

Date and Revisions

Revision Keyword Description of
Date Affected Change
-------- -------- ------
16Aug06 lustre-compared
 Section subdivided for better access.

purge-comparison
 New subsection (detailed chart) added.

lustre-purge Cross reference to chart added.
gpfs-purge Cross reference to chart added.
index New keyword for new section.

23May06 lustre-strategy
 Design section subdivided.

lustre-service New section compares available systems.
index New keyword for new section.
lustre-compared

 GPFS vs. Lustre details expanded.

22Mar06 mpi-io-issues Warning added about parallel I/O
 to globally mounted file systems.

gpfs Cross ref to warning added.
lustre-mpi-io Warning enhanced.

26Sep05 lustre-striping
 New section on striping issues.

lustre-groups New section on group problems.
index New keywords for new sections.
lustre-goals Warnings, cross ref added.
lustre-design OST return-code issues.

03Feb05 lustre New sections on Lustre file system.
index New keywords for new sections.
introduction Lustre added to stack.
glossary Lustre added to glossary.
mpi-io Lustre cross refs added.
gpfs-compared Lustre cross refs added.

08Jul03 flash New section on FLASH use of HDF.
index New keyword for new section.
gpfs-advice GPFS usage/status files noted.

16Sep02 hdf-availability
 Comparison chart updated.

gpfs-compared Comparison chart expanded.
gpfs-advice Purge policy clarified.
index Keyword error corrected.

13Aug02 entire Expanded edition of I/O Guide for LC.

23Jul02 entire First edition of I/O Guide for LC.

TRG (16Aug06)

I/O Guide for LC - 46

UCRL-WEB-201482
Privacy and Legal Notice (URL: http://www.llnl.gov/disclaimer.html)
TRG (16Aug06) Contact: lc-hotline@llnl.gov

I/O Guide for LC - 47

http://www.llnl.gov/disclaimer.html

	Preface
	Introduction
	I/O Glossary
	Hierarchical Data Format
	HDF Features
	HDF Availablity
	HDF5 File Structure
	HDF Operations

	MPI-IO
	MPI-IO Role
	MPI-IO Data Access
	MPI-IO Issues at LC

	GPFS at LC
	GPFS, NFS, DFS Compared
	How GPFS Works
	GPFS Usage Advice
	GPFS Purge Policy
	GPFS Usage Data

	I/O Analysis of FLASH
	Lustre Parallel File System
	Lustre Goals and Roles
	Lustre and GPFS Compared
	Feature Comparison
	Purge Comparison

	Lustre LLNL Implementation
	LLNL's Lustre Strategy
	LLNL's Lustre Service

	Lustre Operational Issues
	Directory Names and Aliases
	Lustre Purge Policy
	MPI-IO Interaction with Lustre
	Lustre Backup Policy
	Lustre Striping
	Lustre Groups

	Disclaimer
	Keyword Index
	Alphabetical List of Keywords
	Date and Revisions

